Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Oluwasanmi Koyejo, Cong Xie, Indranil Gupta
Journal/Conference Name 36th International Conference on Machine Learning, ICML 2019
Paper Category
Paper Abstract We present Zeno, a technique to make distributed machine learning, particularly Stochastic Gradient Descent (SGD), tolerant to an arbitrary number of faulty workers. Zeno generalizes previous results that assumed a majority of non-faulty nodes; we need assume only one non-faulty worker. Our key idea is to suspect workers that are potentially defective. Since this is likely to lead to false positives, we use a ranking-based preference mechanism. We prove the convergence of SGD for non-convex problems under these scenarios. Experimental results show that Zeno outperforms existing approaches.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022