Zero-Shot Dialog Generation with Cross-Domain Latent Actions

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Maxine Eskenazi, Tiancheng Zhao
Journal/Conference Name WS 2018 7
Paper Category
Paper Abstract This paper introduces zero-shot dialog generation (ZSDG), as a step towards neural dialog systems that can instantly generalize to new situations with minimal data. ZSDG enables an end-to-end generative dialog system to generalize to a new domain for which only a domain description is provided and no training dialogs are available. Then a novel learning framework, Action Matching, is proposed. This algorithm can learn a cross-domain embedding space that models the semantics of dialog responses which, in turn, lets a neural dialog generation model generalize to new domains. We evaluate our methods on a new synthetic dialog dataset, and an existing human-human dialog dataset. Results show that our method has superior performance in learning dialog models that rapidly adapt their behavior to new domains and suggests promising future research.
Date of publication 2018
Code Programming Language Multiple
Comment

Copyright Researcher 2022