Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Shafin Rahman, Fatih Porikli, Salman Khan
Journal/Conference Name Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Paper Category
Paper Abstract Current Zero-Shot Learning (ZSL) approaches are restricted to recognition of a single dominant unseen object category in a test image. We hypothesize that this setting is ill-suited for real-world applications where unseen objects appear only as a part of a complex scene, warranting both the `recognition' and `localization' of an unseen category. To address this limitation, we introduce a new \emph{`Zero-Shot Detection'} (ZSD) problem setting, which aims at simultaneously recognizing and locating object instances belonging to novel categories without any training examples. We also propose a new experimental protocol for ZSD based on the highly challenging ILSVRC dataset, adhering to practical issues, e.g., the rarity of unseen objects. To the best of our knowledge, this is the first end-to-end deep network for ZSD that jointly models the interplay between visual and semantic domain information. To overcome the noise in the automatically derived semantic descriptions, we utilize the concept of meta-classes to design an original loss function that achieves synergy between max-margin class separation and semantic space clustering. Furthermore, we present a baseline approach extended from recognition to detection setting. Our extensive experiments show significant performance boost over the baseline on the imperative yet difficult ZSD problem.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022