Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Xiankai Lu, Ling Shao, Jianbing Shen, David Crandall, Wenguan Wang
Journal/Conference Name ICCV 2019 10
Paper Category
Paper Abstract This work proposes a novel attentive graph neural network (AGNN) for zero-shot video object segmentation (ZVOS). The suggested AGNN recasts this task as a process of iterative information fusion over video graphs. Specifically, AGNN builds a fully connected graph to efficiently represent frames as nodes, and relations between arbitrary frame pairs as edges. The underlying pair-wise relations are described by a differentiable attention mechanism. Through parametric message passing, AGNN is able to efficiently capture and mine much richer and higher-order relations between video frames, thus enabling a more complete understanding of video content and more accurate foreground estimation. Experimental results on three video segmentation datasets show that AGNN sets a new state-of-the-art in each case. To further demonstrate the generalizability of our framework, we extend AGNN to an additional task: image object co-segmentation (IOCS). We perform experiments on two famous IOCS datasets and observe again the superiority of our AGNN model. The extensive experiments verify that AGNN is able to learn the underlying semantic/appearance relationships among video frames or related images, and discover the common objects.
Date of publication 2020
Code Programming Language Python
Comment

Copyright Researcher 2022