Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Pin-Yu Chen, Paishun Ting, Sijia Liu, Lisa Amini, Bhavya Kailkhura, Shiyu Chang
Journal/Conference Name NeurIPS 2018 12
Paper Category
Paper Abstract As application demands for zeroth-order (gradient-free) optimization accelerate, the need for variance reduced and faster converging approaches is also intensifying. This paper addresses these challenges by presenting: a) a comprehensive theoretical analysis of variance reduced zeroth-order (ZO) optimization, b) a novel variance reduced ZO algorithm, called ZO-SVRG, and c) an experimental evaluation of our approach in the context of two compelling applications, black-box chemical material classification and generation of adversarial examples from black-box deep neural network models. Our theoretical analysis uncovers an essential difficulty in the analysis of ZO-SVRG: the unbiased assumption on gradient estimates no longer holds. We prove that compared to its first-order counterpart, ZO-SVRG with a two-point random gradient estimator could suffer an additional error of order $O(1/b)$, where $b$ is the mini-batch size. To mitigate this error, we propose two accelerated versions of ZO-SVRG utilizing variance reduced gradient estimators, which achieve the best rate known for ZO stochastic optimization (in terms of iterations). Our extensive experimental results show that our approaches outperform other state-of-the-art ZO algorithms, and strike a balance between the convergence rate and the function query complexity.
Date of publication 2018
Code Programming Language Multiple

Copyright Researcher 2022